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We present LOGAN, a deep neural network aimed at learning generic shape
transforms from unpaired domains. The network is trained on two sets of
shapes, e.g., tables and chairs, but there is neither a pairing between shapes
in the two domains to supervise the shape translation nor any point-wise
correspondence between any shapes. Once trained, LOGAN takes a shape
from one domain and transforms it into the other. Our network consists of
an autoencoder to encode shapes from the two input domains into a common
latent space, where the latent codes encode multi-scale shape features in an
overcomplete manner. The translator is based on a generative adversarial
network (GAN), operating in the latent space, where an adversarial loss
enforces cross-domain translation while a feature preservation loss ensures
that the right shape features are preserved for a natural shape transform.
We conduct various ablation studies to validate each of our key network
designs and demonstrate superior capabilities in unpaired shape transforms
on a variety of examples over baselines and state-of-the-art approaches.
We show that our network is able to learn what shape features to preserve
during shape translations, either local or non-local, whether content or style,
depending solely on the input domain pairs.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape modeling; Shape analysis.

Additional Key Words and Phrases: Shape transform, unsupervised learning,
unpaired domain translation, generative adversarial network, multi-scale
point cloud encoding

1 INTRODUCTION
Shape transform is one of the most fundamental and frequently
encountered problems in computer graphics and geometric model-
ing. With much interest in geometric deep learning in the graphics
community today, it is natural to explore whether a machine can
learn shape transforms, particularly under the unsupervised setting.
Specifically, can a machine learn to transform a table into a chair or
vice versa, in a natural way, when it has only seen a set of tables
and a set of chairs, without any pairings between the two sets?

In recent years, the intriguing unpaired domain translation prob-
lem has drawn much interest in computer vision and computer
graphics, e.g., the domain transfer network (DTN) [Taigman et al.
2017], CycleGAN [Zhu et al. 2017], DualGAN [Yi et al. 2017], MU-
NIT [Huang et al. 2018], among others [Almahairi et al. 2018; Gao
et al. 2018; Hoffman et al. 2018; Hoshen and Wolf 2018; Liu et al.
2017]. However, most success on unpaired image-to-image transla-
tion has been achieved only on transforming or transferring stylistic
image features, not shapes. A symbolic example is the CycleGAN-
based cat-to-dog transfiguration which sees the network only able
to make minimal changes to the cat/dog shapes [Zhu et al. 2017].
The recently developed P2P-NET [Yin et al. 2018] is able to learn
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Fig. 1. Our deep neural network, LOGAN, learns shape transforms from
unpaired domains. The same network can transform from skeletons to
shapes, from cross-sectional profiles to surfaces, between chairs and tables;
it can also add/remove parts, such as the armrests of a chair.

general-purpose shape transforms via point displacements. While
significant shape changes, e.g., skeleton-to-shape or incomplete-to-
complete scans, are possible, the training of P2P-NET is supervised
and requires paired shapes from two domains.

In this paper, we develop a deep neural network aimed at learning
generic shape transforms from unpaired domains. The network is
trained on two sets of shapes, e.g., tables and chairs, each represented
using a point cloud. There is neither a pairing between shapes in
the two domains to guide the shape translation nor any point-wise
correspondence between any shapes; the shapes may even have
different point counts. Once trained, the network takes a point-set
shape from one domain and transforms it into the other.

Without any point-to-point correspondence between the source
and target shapes for the transform, one of the challenges is how
to properly “normalize” the shapes, relating them so as to facilitate
their translation. To this end, we perform shape translation in a
common latent space shared by the source and target domains, rather
than on the point-set shapes directly. The latent space is obtained
by an autoencoder trained prior to shape transform; see Figure 2(a).

More importantly, a proper shape transform from chairs to tables
should not translate a given chair to any table, but to a table that is
clearly from that particular input chair. Hence, some features of the
chair that are also common to tables should be preserved during a
chair-table translation while the other features can be altered. This
poses a key challenge: what features are to be preserved/altered is
unknown — it must depend on the given shape domains and our
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(a) Autoencoder encodes shapes into overcomplete latent codes.
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Feature preservation loss
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(b) Translator networks in latent space.
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Fig. 2. Overview of our network architecture, which consists of an autoencoder (a) to encode shapes from two input domains into a common latent space
which is overcomplete, and a GAN-based translator network (b) designed with an adversarial loss and a loss to enforce feature preservation.

network must learn it without supervision. Our network is designed
with two novel features to accomplish this:

• Our autoencoder encodes shape features at multiple scales,
which is a common practice in convolutional neural networks
(CNNs). However, unlike conventional approaches which ag-
gregate the multi-scale featuers, e.g., in PointNET++ [Qi et al.
2017b], we concatenate the multi-scale features to produce a
latent code with potential redundancy; we call such a latent
code “overcomplete”. Our motivation is that an overcomplete
code for the shape transform would leave more degree-of-
freedom to the translator network to facilitate an implicit
disentangling of the preserved and altered shape features.

• In addition, our chair-to-table translator is not only trained
to turn a chair code to a table code, but also trained to turn
a table code to the same table code, as shown in Figure 2(b).
Our motivation for the second translator loss, which we refer
to as the feature preservation loss, is that it would help the
translator preserve table features (in an input chair code)
during chair-to-table translation.

Figure 2 shows an overview of our network architecture, with shape
translation operating in a latent space produced by an overcom-
plete autoencoder. The translator network itself is built on the basic
framework of generative adversarial networks (GANs), guided by
an adversarial loss and the feature preservation loss. We call our
overall network a latent overcomplete GAN , or LOGAN for short, to
signify the use of GANs for shape-to-shape translation in a common,
overcomplete, latent space. It is also possible to train a dual pair of
translators between the source and target domains, reinforcing the
results with an additional cyclic loss [Zhu et al. 2017].

We conduct ablation studies to validate each of our key network
designs: the autoencoder, the multi-scale and overcomplete latent
codes, as well as the feature preservation loss. We demonstrate
superior capabilities in unpaired shape transforms on a variety of
examples over baselines and state-of-the-art approaches. We show
that LOGAN is able to learn what shape features to preserve during
shape transforms, either local or non-local, whether content or style,
etc., depending solely on the input domain pairs; see Figure 3.

2 RELATED WORK
Computing image or shape transforms is a fundamental problem
in visual data processing and covers a vast amount of literature.
In the classical setting for shape transforms, source shapes are de-
formed into target shapes anchored on corresponding points or

LOGAN
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LOGAN

LOGAN

LOGAN

LOGAN

Domain A Domain B

…

…

…

…

Fig. 3. Depending on the input (unpaired) domains, our network LOGAN
can learn both content transfer (top row: from letters G to R , in varying
font styles) and style transfer (bottom row: from thin to thick font strokes),
without any change to the network architecture. In this example, 2D letters
are represented by dense clouds of 2D points.

parts. The key is how to formulate and compute deformation en-
ergies to ensure detail preservation [Sorkine et al. 2004], structure
preservation [Mitra et al. 2013], or topology variation [Alhashim
et al. 2014]. On the other hand, our work falls into the category of
learning general-purpose, cross-domain image/shape transforms.
As such, we mainly cover learning-based methods from vision and
graphics that are most closely related to our approach.
Unpaired image-to-image translation. A wave of notable works

on unsupervised/unpaired cross-domain image translation have
emerged in 2017. In DTN, Taigman et al. [2017] train a GAN-based
domain transfer network which enforces consistency of the source
and generated samples under a given function f . For example, f can
capture face identities, allowing their network to generate identity-
preserving emojis from facial images. CycleGAN [Zhu et al. 2017]
and DualGAN [Yi et al. 2017] both train dual translators with a cyclic
loss to address the challenge of unpaired image-to-image translation.
However, by performing the translations on images directly, based
on pixel-wise losses, these methods perform well on transferring
stylistic images features, but poorly on shape transforms.

Dong et al. [2017] train a conditional GAN to learn shared global
features from two image domains and to synthesize plausible im-
ages in either domain from a noise vector concatenated with a
class/domain label. To enable image-to-image translation, they sep-
arately train an encoder to learn a mapping from an image to its
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Fig. 4. Architecture of our multi-scale, overcomplete autoencoder. We use the set abstraction layers of PointNet++ [Qi et al. 2017b] to produce point features
in different scales and aggregate them into four sub-vectors: z1, z2, z3, and z4. The four sub-vectors are padded with zeros and summed up into a single
256-dimensional latent vector z that is overcomplete; the z vector can also be seen as a concatenation of the other four sub-vectors. During training, we feed all
the five 256-dimensional vectors to the decoder. In the decoder, the blue bars represent fully-connected layers; grey bars represent ReLU layers.

latent code, which would serve as the noise input to the conditional
GAN to generate a target image. In UNIT, Liu et al. [2017] assume
that corresponding images from two domains can be mapped to
the same code in a shared latent space. Based on this assumption,
they train two GANs, coupled with weight sharing, to learn a joint
distribution over images from two unpaired domains. By sharing
weight parameters corresponding to high level semantics in both
the encoder and decoder networks, the coupled GANs are enforced
to interpret these image semantics in the same way.

Architecturally, there are some similarities between LOGAN and
UNIT [Liu et al. 2017]. Both networks take inputs from two domains,
map them into in a latent space, and enforce some notion of “self-
reconstruction”. However, LOGAN does not make the shared latent
space/code assumption: it is not aiming to map the two inputs into
the same latent code. Moreover, the notion of self-reconstruction
in UNIT is realized by a variational autoencoder (VAE) loss and
the VAE is trained together with the GANs. In contrast, LOGAN
trains its autoencoder and translator networks separately, where
the notion of self-reconstruction is applied to latent codes in the
translators, via the feature preservation loss.

Identity loss in domain translation. Our feature preservation loss
is equivalent, in form, to the identity loss in the DTN of Taigman
et al. [2017] for reinforcing face identity preservation during emoji
generation; it was later utilized in CycleGAN [Zhu et al. 2017] as an
additional regularization term for color preservation. In our work,
by enforcing the same loss in latent space, rather than on images
directly, and over the multi-scale overcomplete codes in LOGAN,
we show that the loss can play a critical role in feature preservation
for a variety of shape transformation tasks. The preserved features
can be quite versatile and adapt to the input domain pairs.

Disentangled representations for content generation. Disentangled
image representations have been utilized to produce many-to-many
mappings so as to improve the diversity of unsupervised image-to-
image translation [Huang et al. 2018; Lee et al. 2018]. Specifically, in
MUNIT, a multi-modal extension of UNIT [Liu et al. 2017], Huang
et al. [2018] relax the assumption of fully shared latent space be-
tween the two input domains by postulating that only part of the
latent space, the content, can be shared whereas the other part, the

style, is domain-specific. Their autoencoders are trained to encode
input images into a disentangled latent code consisting of a con-
tent part and a style part. During image translation, a fixed content
code is recombined with a random style code to produce diverse,
style-transferred target images. Most recently, Press et al. [2019]
learn disentangled codes in a similar way, but for a different kind
of unsupervised content transfer task, i.e., that of adding certain
information, e.g., glasses or facial hair, to source images.
In contrast, LOGAN does not learn a disentangled shape repre-

sentation explicitly. Instead, our autoencoder learns a multi-scale
representation for shapes from both input domains and explicitly
assigns encodings at different shape scales to sub-vectors of the la-
tent codes. Specifically, codes for shapes from different domains are
not enforced to share any sub-codes or content subspace; the codes
are merely constructed in the same manner and they belong to a
common latent space. Feature preservation during shape translation
is enforced in the translator networks, with the expectation that an
overcomplete latent representation would facilitate the disentan-
gling of preserved and altered features.

Learning shape motions and transforms. Earlier work on spatial
transformer networks [Jaderberg et al. 2015] allows deep convo-
lutional models to learn invariance to translation, scale, rotation,
and more generic shape warping for improved object recognition.
Byravan and Fox [2017] develop a deep neural network to learn rigid
body motions for robotic applications, while deep reinforcement
learning has been employed to model controllers for a variety of
character motions and skills [Peng et al. 2018]. For shape transforms,
Berkiten et al. [2017] present a metric learning approach for analogy-
based mesh detail transfer. In P2P-NET, Yin et al. [2018] develop
a point displacement network which learns transforms between
point-set shapes from two paired domains.

More closely related to our work is the VAE-CycleGAN recently
developed by Gao et al. [2018] for unpaired shape deformation trans-
fer . Their network is trained on two unpaired animated mesh se-
quences, e.g., animations of a camel and a horse or animations of
two humans with different builds. Then, given a deformation sample
from one set, the network generates a shape belonging to the other
set which possesses the same pose. One can view this problem as a
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special instance of the general shape transform problem. Specifically,
it is a pose-preserving shape transform where the source meshes
(respectively, the target meshes) model different poses of the same
shape and they all have the same mesh connectivity. LOGAN, on the
other hand, is designed to be a general-purpose translation network
for point-set shapes, where much greater geometric and topological
variations among the source or target shapes are allowed.

Technically, the VAE-CycleGAN of Gao et al. [2018] encodes each
input set into a separate latent space and trains a CycleGAN to
translate codes between the two latent spaces. 3D models can then
be recovered from the latent codes by the VAE decoder. In contrast,
LOGAN encodes shapes from both input domains into a common
latent space and performs shape translations in that space. To enable
generic shape transforms, the key challenge we address is learning
what shape features to preserve during the translation.

Deep learning for point-set shapes. Recently, several deep neural
networks, including PointNET [Qi et al. 2017a], PointNET++ [Qi
et al. 2017b], PCPNET [Guerrero et al. 2018], PointCNN [Li et al.
2018], and PCNN [Atzmon et al. 2018], have been developed for
feature learning over point clouds. Generative models of point-
set shapes [Achlioptas et al. 2018; Fan et al. 2017] and supervised,
general-purpose point-set transforms [Yin et al. 2018] have also
been proposed. To the best of our knowledge, our work represents
the first attempt at learning general shape transforms from unpaired
domains. While LOGAN relies on PointNET++ for its multi-scale fea-
ture encodings, it produces an overcomplete latent code via feature
concatenation rather than feature aggregation.

3 METHOD
Given two sets of unpaired shapes X and Y, our goal is to establish
two mappings MX→Y : X 7→ Y and MY→X : Y 7→ X, to
translate shapes between the two domains. The translation should
be in a natural and intuitive manner, with special emphasis given
to the preservation of common features. Other than assuming that
such common features exist in both domains, we make no other
assumption on them or their properties. Note that such features can
be both local and global in nature, and hence are difficult to define
or model directly. Therefore, we employ deep neural networks to
implicitly learn those features.

3.1 Overview of networks and network loss
As shown in Figure 2, our network comprises of two parts that are
trained in separate steps. First, an autoencoder is trained. The multi-
scale encoder (Sec. 3.2) E takes point clouds from both domains as
input, and encodes them into compact latent codes in a common
latent space. The decoder D decodes the latent codes back into point
clouds. After training, the autoencoder produces the over-complete
latent codes for the input shapes, denoted byZX andZY , where
ZX = E(X) andZY = E(Y).

The second part of our network is a latent code translator network
that transforms betweenZX andZY . It consists of two translators:
TX→Y : ZX 7→ ZY and TY→X : ZY 7→ ZX . We only show
TX→Y in the figure for simplicity. The translators take latent codes

in both domains as input, and treat them differently with two differ-
ent loss functions. Once trained, given a shape X ∈ X, its translated
shape in domain Y is obtained by Yx = D(TX→Y (E(X ))).
We use three loss terms for the translator network to create a

natural and feature-preserving mapping:

• Adversarial loss: Take TX→Y in Figure 2 (b) for example.
Given x ∈ ZX , the network performs the translation and
an adversarial loss is applied on the translated latent-code.
The discriminator tells the output codes from the ground-
truth codes inZY , to ensure the distribution of the translator
outputs matches the target distribution ofZY .

• Feature preservation loss: Given y ∈ ZY , since this network
serves only X → Y transfer, the output still falls inZY , and
we use a feature preservation loss (identity loss) to enforce
the output of the network to be similar to the original input y.
Feature preservation loss is the key for our network to learn
meaningful mappings, since it encourages the translator to
keep most portions of the code intact and only changes the
parts that are really important for the domain translation.

• Cycle-consistency loss: The two loss terms above play critical
roles in our translator network and already allow the gener-
ation of satisfactory results. However, we may introduce a
third loss term, the cycle-consistency loss or simply, the cycle
loss, to further regularize the translation results.
The cycle loss pushes each shape to reconstruct itself after
being translated to the opposite domain and then translated
back to its original domain. The term encourages the map-
pings TX→Y and TY→X to be one-to-one. It further reduces
the possibility that shapes in one domain only map to a hand-
ful of shapes in the opposite domain, i.e., mode collapse.

Note that the cycle loss only acts as a supportive role in our
network. Without cycle-consistency loss, our network is still able to
suppress mode collapse. The multi-scale encoder pushes the codes
from both domains to share common spaces in different scales,
bringing large distribution overlap and making it hard to collapse
in ZX → ZY without collapsing in ZY → ZY , and the latter
is unlikely to happen due to the feature preservation loss. In our
experiments, cycle loss becomes prominent when the size of the
dataset is very small. Details of the translator network and the loss
functions can be found in Sec. 3.3.

3.2 Multi-scale overcomplete autoencoder
Our multi-scale autoencoder is depicted in Figure 4. The input to our
encoder is a set of n points. It passes through four set abstraction
layers of PointNet++ [Qi et al. 2017b] with increasing sampling
radius. The output point features from each of the four layers are
further processed by MLP and a max-pooling layer to form a single
64-dimensional sub-vector. We pad the 4 sub-vectors z1, z2, z3, z4
from the 4 branches with zeros to make them 256-dimensional
vectors, and sum them up to get an overcomplete 256 dimensional
latent vector z. The detailed network structure can be found in the
supplementary material.
During training, we feed the padded sub-vectors and the over-

complete latent vector to the same decoder. Similar to [Achlioptas
et al. 2018], our decoder is a multilayer perceptron (MLP) with 4
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(a) (c)(b) 

Fig. 5. Our autoencoder can encode an input point cloud (a) into 5 latent
vectors shown in Figure 4, and decode them back to point clouds. The
decoding output for the overcomplete latent code (c) is better than the 4
sub-vectors (b).

fully-connected layers. Each of the first 3 fully-connected layers
are followed by a ReLU layer for non-linear activation. The last
fully-connected layer outputs an n × 3 point cloud for each input
256-dimensional vector. As shown in Figure 5, our decoder is able
to reconstruct point clouds from the 5 vectors simultaneously. The
quality of reconstruction from z is higher than the 4 sub-vectors as
it contains most information. The loss function of the autoencoder
considers all the 5 point clouds reconstructed from the 5 vectors:

LAE = Lrecz + λ1

4∑
i=1

Lreczi , (1)

where λ1 is a scalar weight set to 0.1 by default. Lrecz and Lreczi denote
reconstruction losses for code z and zi . We use the earth mover
distance (EMD) to measure the reconstruction losses.

Note that our current choices of the latent code length (256) and
number of scales (4) were both experimental. We tested autoencod-
ing using shorter/longer codes as well as scale counts from two
to six. Generally, short codes do not allow the multi-scale shape
features to be well encoded and using too few scales compromises
the translator’s ability to disentangle and preserve the right features
during cross-domain translation. On the other hand, employing
latent codes longer than 256 or increasing the number of scales be-
yond 4 would only introduce extra redundancy in the latent space,
which did not improve translation results in our experiments.

3.3 Feature-preserving shape transform
Our translatorsTX→Y andTY→X work in the common latent space.
Similar to the decoder, they are implemented as MLPs with 5 fully-
connected (FC) layers, as shown in Figure 6. The detailed network
structure can be found in the supplementary material.
The two discriminators FX and FY work in the latent space as

well. They are implemented as MLPs with 3 FC hidden layers where
each of them are followed by a BN layer and a ReLU layer, as shown
in Figure 6. We adopt WGAN [Arjovsky et al. 2017] in our imple-
mentation. To that end, we directly take the result of the output
layer without sigmoid activation.

256

Discriminator:

256 256 256 256 256 256 256

1

Translator:

Feature preservation loss

Fig. 6. Architecture of our translator network. The blue bars represent fully-
connected layers; orange bars represent BN-ReLU layers.

In the common latent space, the translators and discriminators
work directly over the over-complete latent code, x ∈ ZX and
y ∈ ZY , as they already contain the information of the sub-vectors.
For simplification, in the following part of this section, we will only
explain the loss function in details for TX→Y : ZX 7→ ZY . The
opposite direction can be derived directly by swapping x and y in
the equations. The loss function for TX→Y is,

LX→Y = LWGAN
X→Y + αL

FP
X→Y (2)

whereα is a scalar weight set to 20 by default. Similar toWGAN [Gul-
rajani et al. 2017], the adversarial loss for TX→Y is defined as:

LWGAN
X→Y = Ey∼P(ZY )[FY (y)] − Ex∼P(ZX )[FY (yx )] + λ2LGP (3)

where yx = TX→Y (x) is the output of translation for x . LGP is
the gradient penalty term introduced by [Gulrajani et al. 2017] for
regularization. λ2 is a scalar weight set to 10 by default. During
training, our discriminator FY aims to maximize the adversarial
loss, while our translator TX→Y aims to minimize it.
As shown in Figure 6, our feature preservation loss is defined

in the latent space. For translator TX→Y , it is defined as the L1
distance between the input vector y ∈ ZY and its translated or
transformed output vector yy = TX→Y (y) :

LFPX→Y = Ey∼P(ZY )[∥y −TX→Y (y)∥1] (4)

Training our translators with the loss function LX→Y or LY→X
has already produced reasonable result as shown in Figure 7. How-
ever, having a cycle-consistency term could further improve the re-
sult by encouraging one-to-one mapping between the two input do-
mains. For latent code x ∈ ZX , applyingTX→Y followed byTY→X
should produce a code similar to itself: TY→X(TX→Y (x)) ≈ x . Sim-
ilarly for y ∈ ZY we have: TX→Y (TY→X(y)) ≈ y. Thus, the cycle-
consistency loss term is defined as,

LCycle = Ex∼P(ZX )[∥TY→X(TX→Y (x)) − x ∥1]
+ Ey∼P(ZY )[∥TX→Y (TY→X(y)) − y∥1]

(5)

The overall loss function is defined as:
LOverall = LX→Y + LY→X + βLCycle (6)

where β is a scalar weight set to 20 by default. With the overall loss
function, the goal of training the translators is to solve:

T ∗
X→Y ,T

∗
Y→X = argmin

T
max
F

LOverall (7)

where F denotes {FX , FY }, T denotes {TX→Y ,TY→X}. In Sec. 4,
we perform an ablation study to show that all loss terms play active
roles in achieving high-quality results.
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(a) Input (c) FP + WGAN (b) Cycle + WGAN (d) FP + WGAN + Cycle

Fig. 7. Given an input table (a), WGAN + cycle loss (b) cannot translate
it into a reasonable chair. Without the cycle loss, FP loss + WGAN can
generate a reasonable output (c). Using the 3 losses together produces the
output chair (d) that is visually most similar to the input table.

3.4 Training details
We train the autoencoder and the translator networks separately in
two steps, since an insufficiently trained autoencoder can misguide
the translators to poor local minima. In our experiments, we train
the autoencoder for 400 epochs with an Adam optimizer (learning
rate = 0.0005, batch size = 32). After that, we train the translator
networks with Adam and the training schema of [Gulrajani et al.
2017] for 600 epochs. We set the number of discriminator iterations
per generator iteration as two. The batch size we set for training
the translator networks is 128. The learning rate starts from 0.002
and decays to 5e-4 during training. Assuming each of the datasets
of two domains contains 5000 shapes, the training of autoencoder
takes about 20 hours and the training of two translators takes about
10 mins on a NVIDIA Titan Xp GPU.

4 RESULTS AND EVALUATION
To demonstrate the capability of LOGAN in learning unpaired shape
transforms, we conduct experiments including ablation studies and
comparisons to baselines and state-of-the-art techniques. Through-
out the experiments, the network was trained with the same default
network settings as described in Section 3 and the supplementary
material. Unless otherwise specified, there is no hyperparameter or
architecture tuning for any specific input datasets. All visual results
are presented without any post-processing.

4.1 Shape transform results and ablation studies
The first domain pair on which we test our network is the chair and
table datasets from ShapeNet [Chang et al. 2015], which contain
mesh models. The chair dataset consists of 4,768 training shapes and
2,010 test shapes, while the table dataset has 5,933 training shapes
and 2,526 test shapes. We normalize each chair/table mesh to make
the diagonal of its bounding box equal to unit length and sample
the normalized mesh uniformly at random to obtain 2,048 points
for our point-set shape representation. All output point clouds, e.g.,
in Figures 8-11, are in the same resolution of 2,048 points.

Comparing autoencoding. With the chair-table domain pair, we
first compare our autoencoder, which produces multi-scale and
overcomplete latent codes, with two baseline alternatives:

• In Baseline AE 1, we apply the original PointNet++, as de-
scribed in [Qi et al. 2017b], as the encoder to produce latent
vectors of length 256 (the same as in our autoencoder) and use

the same decoder as described in Section 3.2. With this alter-
native, there is no separate encoding of mulit-scale features
(into sub-vectors as in our case) to produce an overcomplete
latent code; features from all scales are aggregated.

• In Baseline AE 2, we set λ1 = 0 in the loss function (1) of
our autoencoder. With this alternative, the autoencoder still
accounts for shape features from all scales (via the vector z),
but the impact of each sub-vector (one of the zi ’s, i = 1, . . . , 4)
for a specific feature scale is diminished.

An examination on reconstruction errors of the three autoen-
coders, based on the Earth Mover Distance (EMD), reveals that our
autoencoder may not be the best at reconstructing shapes. However,
the main design goal of our autoencoder is to facilitate shape trans-
lation between unpaired domains, not accurate self-reconstruction.
In Figure 8 (a-d), we show that with the same translator network
but operating in different latent spaces, our autoencoder leads to
the best cross-domain transforms, compared to the two baselines.
With autoencoding by Baseline AE 1, the translator is unable to

preserve input features and can suffer from mode collapse. With
a multi-scale overcomplete code z, Baseline AE 2 clearly improves
results, but it can still miss input features that should be preserved,
e.g., more global features such as the roundness at the top (row
1), the oblique angles at the legs (row 4), and more local features
such as the bottom slat between the legs (row 8); it could also add
erroneous features such as armrests (row 5) and extra holes (row 7).

In contrast, with a more overcomplete and multi-scale encoding
into the latent space by using all five vectors (z, z1, . . . , z4), our de-
fault autoencoder produces the most natural table-chair translations.
This is likely attributed to a better disentangling of the preserved
and altered features in the latent codes.

Joint embedding of latent codes. In Figure 9, we visualize the com-
mon latent spaces constructed by the three autoencoders by jointly
embedding the chair and table latent codes. For each domain, we
standardize every latent dimension by moving the mean to 0 and
scaling the values to a standard deviation of 1.0. We discretize the
values in each dimension by multiplying it with a constant 3 and
rounding it to an integer. Finally, we measure distances between
all the latent codes using Hamming distance and embed the codes
into 2D space via t-SNE. We can observe that, compared to the two
baselines, our default autoencoder brings the chairs and tables closer
together in the latent space since it is able to better discover their
common features. After chair→table translation, the chair codes are
closer to the tables in all three cases, but our default network clearly
produces a better coverage of the target (table) domain, which can
explain, in part, its superior performance for the translation task.

Comparing translator settings. In the second ablation study, we fix
our autoencoder as presented in Figure 4, but change the translator
network configuration by altering the loss function into two baseline
alternatives: WGAN loss + Cycle loss and WGAN loss + feature
preservation (FP) loss. Note that our default network LOGAN has
all three losses. It is quite evident, from the visual results in Figure 8,
that the feature preservation loss has the most significant positive
impact on cross-domain translation, while the cycle loss provides
additional regularization for improved results.
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(a) Test input. (c) Baseline AE 1. (d) Baseline AE 2. (e) WGAN + Cycle. (f) WGAN +FP.(b) Our result. (g) Retrieved shape.

Fig. 8. Comparing chair-table translation results (all in 2,048 points) using different network configurations. Top four rows: chair-to-table. Rest: table-to-chair.
(a) Test input. (b) Result by default LOGAN. (c) Baseline AE 1 as autoencoder + our translator network. (d) Baseline AE 2 (λ1 = 0) + our translator network. (e)
Our autoencoder (λ1 = 0.1) + WGAN & Cycle loss. (f) Our autoencoder (λ1 = 0.1) + WGAN & feature preservation (FP) loss. (g) Most similar shape retrieved
using EMD, from the target training domain. Note that the chair dataset from ShapeNET have some benches mixed in, which were retrieved as “tables.”

Part insertion/removal. As an example of transferring or edit-
ing local shape structures, we show that LOGAN is able to learn
to add/remove armrests for the chair dataset; see Figure 11. The
dataset split was obtained from the chairs in ShapeNET by a hand-
crafted classifier. It contains 2,138 armchairs and 3,572 armless
chairs, where we used 80% of the data for training and the rest
for testing. The results demonstrate that our network can work ef-
fectively on part-level manipulation, as it learns which parts to alter
and which parts to preserve purely based on seeing the input shapes

from the two domains, without supervised training. In addition, the
insertion/removal of the parts are carried out naturally.
For additional results and comparisons, including large and ex-

tended galleries like those presented in Figures 8 and 10, please refer
to the supplementary material.

4.2 Comparison with supervised P2P-NET
In Figure 10, we show unpaired cross-domain shape transform re-
sults obtained by LOGAN, on several domain pairs from the recent
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Skeleton↔ Shape Scan↔ Shape Profiles↔ Surface
Chamfer EMD/n Chamfer EMD/n Chamfer EMD/n

PointNET++ autoencoder (AE) + Our translator with all three losses 5.30 0.071 5.30 0.079 9.29 0.099
Our AE (λ1 = 0) + Our translator with all three losses 2.24 0.048 2.42 0.051 3.08 0.061
Our AE (λ1 = 0.1) + Our translator with only WGAN + Cycle losses 14.06 0.098 16.74 0.127 17.06 0.116
Our AE (λ1 = 0.1) + Our translator with only WGAN + FP losses 2.22 0.047 2.53 0.054 3.37 0.064
LOGAN: Our AE (λ1 = 0.1) + Our translator with all three losses 2.11 0.046 2.18 0.048 3.09 0.061
P2P-NET: Supervised method with paired domains 0.44 0.020 0.66 0.060 1.36 0.056

Table 1. Quantitative comparisons between different autoencoder and translator configurations, on transformation tasks from P2P-NET. Reported errors are
averaged over two categories per domain pairs (see Figure 10), and are measured against ground-truth target shapes from the P2P-NET dataset.
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(a) Baseline AE 1. (b) Baseline AE 2. (c) Our AE

Fig. 9. Visualizing joint embeddings of table and chair latent codes produced
by three autoencoders. Top row: red = chair, blue = table, before translation.
Bottom: magenta = chair after translation; blue = original table. Our default
AE brings the chairs and tables closer together in common latent space.

work P2P-NET [Yin et al. 2018], where the specific input shapes
were also from their work. We compare these results to P2P-NET,
as well as results from other network configurations as done in Fig-
ure 8. Note that these shape transforms, e.g., cross-sectional profiles
to shape surfaces, are of a completely different nature compared to
table-chair translations. Yet, our network is able to produce satisfac-
tory results, as shown in column (b), which are visually comparable
to results obtained by P2P-NET, a supervised method.
Both LOGAN and P2P-NET aim to learn generic cross-domain

transforms between point-set shapes. P2P-NET works on paired
domains but without explicit feature preservation, while LOGAN is
trained on unpaired data but enforces a feature preservation loss in
the GAN translator. The results show that LOGAN is able to preserve
the right global features for skeleton/scan-to-shape translations. At
the same time, some finer details, e.g., the swivel chair legs and
the small bump near the back of the fuselage in row 1, can also be
recovered. However, the unsupervised LOGAN cannot quite match
P2P-NET in this regard; see the back of the swivel chair.

Since P2P-NET is supervised, ground-truth target shapes are avail-
able to allow us to quantitatively measure the approximation quality
of the translation results. As shown in Table 1, our default LOGAN

R→G G→R
MSE IOU MSE IOU

CycleGAN 0.234 0.413 0.248 0.411
UNIT 0.264 0.377 0.265 0.376
MUNIT 0.362 0.235 0.341 0.051
LOGAN (ours) 0.210 0.466 0.216 0.477

Table 2. Quantitative comparisons on G-R translation by different unpaired
cross-domain translation networks. Mean squared error (MSE) and inter-
section over union (IOU) are measured against ground-truth target letters
and averaged over the testing split of the G-R dataset. Better-performing
numbers are highlighted in boldface.

network achieves the best quality, compared to other baseline alter-
natives, but still falls short of the supervised P2P-NET.

4.3 Unpaired style/content transfer and comparisons
Most deep networks for unpaired cross-domain translation work on
images, aiming for content-preserving style transfer [Huang et al.
2018; Liu et al. 2017; Yi et al. 2017; Zhu et al. 2017]. We conduct an
experiment to compare LOGANwith these state-of-the-art networks
on a Font dataset we collected. The dataset consists of 7,466 fonts of
English letters. For each letter, we produce a rendered 2562 image by
normalizing the letter to make the longest edge of its bounding box
equal to 248. Then we obtain a point cloud by uniformly sampling
2,048 points over the pixels inside each letter shape.

In the first test, we train the networks to translate between regular
letters ofG and R (referred to as thinGs and thinRs), in various fonts,
and their boldface versions (referred to as thickGs and thickRs),
respectively, where stroke thickness is regarded as a style. Sincemost
fonts in our collected dataset do not have paired regular and boldface
types, we split the set of allGs andRs in the dataset simply by sorting
them based on how many pixels are inside the letter shapes. The
first 2,500 letters with more interior pixels are regarded as thickG/Rs,
and the last 2,500 of them as thinG/Rs. Then we randomly selected
500 thinG/Rs and 500 thickG/Rs to serve as test inputs while using
the rest for training. In this case, an ideal translator would only
change the stroke thickness of an input letter while keeping the
letter in the same font.

The second test would assess the networks’ capabilities for style-
preserving content transfer , via aG-R translation task. From the 7,466
pairs of uppercase Gs and Rs, each in the same font, we randomly

2019-03-26 01:27. Page 8 of 1–12.



LOGAN: Unpaired Shape Transform in Latent Overcomplete Space • 9

(a) Test  input. (d)  Baseline AE 1. (e) Baseline AE 2. (f) WGAN + Cycle. (g) WGAN + FP.(b) Our result. (h) P2P-NET.(c) Ground-truth.

Fig. 10. Comparisons between various network configurations and (supervised) P2P-NET, on shape transform examples from P2P-NET: skeleton→shape (rows
1-2), scan→surface (rows 3-4), and (cross-sectional) profiles→surface (rows 5-6). Ground truth target shapes are shown as well. All results are in 2,048 points.

Fig. 11. Unpaired shape transforms between armchairs and armless chairs.
First two rows show armrest removal while the last two rows show addition.

selected 1,000 to serve as the testing set while using the rest for
training, without pairing any of the Gs with Rs in the same font.
For this task, we expect an ideal translator to transform samples
between G and R by changing the letter (the content) only, while
preserving its style, e.g., font width, height, thickness, skewness.

We compare our method with three unpaired image translation
networks: the original CycleGAN [Zhu et al. 2017] which translates
images directly, as well as UNIT [Liu et al. 2017] andMUNIT [Huang
et al. 2018], both of which translate latent codes. While our network
LOGAN takes point clouds as inputs, the other networks all input
and output images.We trained each of the four networks for 15 hours
for thinG/R-thickG/R translation and 27 hours for G-R translation.
To help with comparison, we convert the output point clouds from
LOGAN to images as follows: for each point in a given point cloud,
we find all its neighbors within r pixels away, and then fill the
convex hull of these points; we used r = 10 in our experiments.
Results from thinG/R-thickG/R translations are shown in Fig-

ures 12. All the networks performed decently for this style transfer
task, which is expected out of CycleGAN, UNIT, andMUNIT. A close
examination reveals that LOGAN tends to produce letter strokes
with more regular thickness compared to the other networks.

Figure 13 shows comparison results for the style-preserving con-
tent transfer between Gs and Rs. We observe that CycleGAN, UNIT,
and MUNIT are unable to learn transforms between global shape
structures, which would be necessary for a G-R translation. In par-
ticular, the common latent code assumption of UNIT would not
hold, hence the network was seemingly forced to copy the input.
With a disentanglement between content and style codes, the results
by MUNIT are different from those from UNIT, but they are still
limited to localized changes to the inputs. This is because MUNIT
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Fig. 12. Comparisons on a style transfer, i.e., thinG/R-thickG/R translation,
by different methods. First four rows: thin-to-thick; last four rows: thick-to-
thin. From left to right: input letter images; corresponding input point clouds;
output point clouds from LOGAN; images reconstructed from our results;
output images of CycleGAN trained on images; outputs from UNIT [Liu
et al. 2017]; outputs from MUNIT [Huang et al. 2018].

is designed for content preservation, but there is no appropriate
content features to preserve for the G-R translation task.

Overall, our network can adaptively learn which features (content
vs. style) to preserve and which to transfer according to the training
domain pairs. We also provide quantitative comparisons in Table 2
for G-R translation since we have ground-truth target letters. These
results again demonstrate the superiority of LOGAN.

4.4 Comparison with unpaired deformation transfer
The latent VAE-CycleGAN developed by Gao et al. [2018] was de-
signed for the specific task of unpaired deformation transfer on
meshes. In this last experiment, we further test the generality of our
shape transformation network, by training it on datasets from [Gao
et al. 2018]. In Figure 14, we compare results obtained by LOGAN
and results from [Gao et al. 2018] as provided by the authors. The
point clouds for training were obtained by uniformly sampling 2,048
points from the corresponding meshes. The output point clouds con-
tain the same number of points. Note that the horse→ camel dataset
contains a total of 384 shapes in the training set; hand → pants
contains 342 shapes; fit → fat contains 583 shapes; and flamingo

Fig. 13. Comparisons on a style-preserving content transfer task, i.e., G-R
translation, by different methods. Each two rows show a pair of translations
between a G and an R in the same font.

→ human only contains 102 shapes. Since these datasets are sig-
nificantly smaller than those from the previous experiments, we
adjusted the hyperparameter λ2 to 40 in order to better avoid over-
fitting, and increase the number of training epochs to 1,200.
The results show that LOGAN is able to learn to preserve pose-

related features and achieve pose-preserving shape transform, like
Gao et al. [2018]. However, since our current implementation of the
network is limited by the point resolution (to 2,048), both the input
and output point clouds have lower surface quality as reflected by
missing surface details and scattered noise.

4.5 Implicit disentanglement over latent codes
We examine how our latent space representations may help dis-
entangle preserved vs. altered shape features during cross-domain
translation. In Figure 15, we plot latent code dimensions with the
largest (top 64 out of 256 dimensions, in orange color) and small-
est changes (bottom 64, in blue color) for three translation tasks:
skeleton→shape, G→R, and chair→table. The plot is produced on
the test sets and based on the mean magnitude of code changes.
We can observe that our network automatically learns the right

features to preserve (e.g., more global or coarser-scale features for
skeleton→shape and more local features for G→R), solely based on
the input domain pairs. For the chair→table translation, coarse- and
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Fig. 14. Comparisons with unpaired deformation transfer [Gao et al. 2018]. (a) Input meshes; (b) output meshes by Gao et al. [2018]; (c) input point clouds
sampled from (a) using 2,048 points; (d) output point clouds also with 2, 048 points, by LOGAN, our generic cross-domain shape transform network.

Skeleton →  surface

G → R

Chair → table

(b) Baseline AE 1 + our translator network(a) Our AE + our translator network

[ fine-scale             ←   latent code  →             coarse-scale ]

Fig. 15. Visualizing “disentanglement” in latent code preservation (blue color) and alteration (orange color) during translation, where each bar represents one
dimension of the latent code. Orange bars: top 64 latent code dimensions with the largest average changes. Blue bars: dimensions with smallest code changes.

fine-level level features are both impacted. In addition, compared to
PointNET++ encoding, our default autoencoder with overcomplete
codes better disentangles parts of the latent codes that are preserved
vs. altered. Note that unlike MUNIT [Huang et al. 2018], LOGAN
does not impose any explicit code separation/disentanglement, the
implicit disentanglement is likely the result of having more degrees-
of-freedom in the overcomplete latent codes.

5 DISCUSSION, LIMITATION, AND FUTURE WORK
We develop a deep neural network for learning generic cross-domain
shape translations. The key challenge posed is how to ensure that
the network can learn shape transforms between two domains with-
out any paired shapes. Our motivation is that for most modeling
tasks, especially those involving 3D models, it is difficult to find
pre-existing paired data due to a lack of 3D models to begin with.
On the other hand, synthesizing paired 3D data is unrealistic since
3D modelnig is generally a non-trivial task; this is the very reason
why we seek learning methods to automate the process.

Cross-domain shape translation is not suitable for all domain
pairs, e.g., (chair, airplane) or (human body, face). Hence, there is

Fig. 16. Several failure cases by LOGAN: (a) scattered point clouds; (b-c)
unnatural transform results due to lack of commonalities in the target
domain; (c) failed translation between shapes differing in global scales.

an implicit assumption that shapes from the two domains should
share some commonalities. In general, these commonalities may
be latent; they may reflect global or local features and represent
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either content or style. The key is for the network to learn the right
commonalities and keep them during shape translations, in a way
that is adaptive to the input domain pairs and the input shapes. Our
network is designed with several important features to accomplish
this: autoencoding shapes from two domains into a common latent
space; the feature preservation loss; and perhaps most importantly,
the use of multi-scale and overcomplete latent codes.
Another aspect of our work is the separation of autoencoder

training from the latent cross-domain translation network. Unlike
most previous works on unpaired cross-domain image translation,
e.g., [Huang et al. 2018; Liu et al. 2017], we do not use a combined
loss. Similar to Gao et al. [2018], we train the autoencoder and
translator separately. We also believe that the separation facilitates
training of the GAN translators and leads to improved results.

We regard our work as only making a first step towards generic,
unpaired cross-domain shape transform, and it still has quite a
number of limitations. First, due to the inherent nature of point
cloud representations, the output shapes from our network are
not necessarily clean and compact. The points can be scattered
around the desired locations, especially when there are thin parts;
see Figure 16(a) and some results in Figure 13.

Second, due to our assumption of shared commonalities between
the input domains, if an input shape in one domain cannot find
sufficient commonalities in the other domain, our network cannot
learn a natural translation for it; see Figures 16(b-c). In such cases,
the adversarial loss plays a more dominant role. We can observe
the impact of this loss in rows 1-3 of Figure 8. These chair→table
translation results by LOGAN cannot retain the squared tops, which
may be judged by some as an unnatural transform; the reason is
that most tables in the training set have rectangular tops. Similarly,
the result in Figure 16(b) is not a complete failure as the output table
did preserve the square top as well as certain leg features. Simply
removing the chair back would result in an unusual table.

Last but not least, performing translations in a common space and
measuring the feature preservation loss entry-by-entry imply that
we implicitly assume a “scale-wise alignment” between the input
shapes. That is, the common features to be preserved should be in
the same scales. Figure 16 (d) shows a result from LOGANwhich was
trained to translate between arrow shapes of very different scales;
the result is unnatural due to a lack of that scale-wise alignment.
In future work, we would like to consider other overcomplete,

concatenated shape encodings where the different representations
reflect other, possibly semantic, aspects of the shapes, beyond their
multi-scale features. We would also like to expand and broaden the
scope of shape transforms to operations such as shape completion,
style/content analogy, and more. Finally, semi-supervision or condi-
tional translations [Huang et al. 2018] to gain more control on the
transform tasks are also worth investigating.
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